Appendix A. Estimation of inelastic electron beam – sample interaction

![Graph showing mass stopping power of Cu$_6$Sn$_5$ as a function of incident electron energy based on Bethe stopping power theory.]

Figure A.1. Calculated mass stopping power of Cu$_6$Sn$_5$ as a function of incident electron energy based on Bethe stopping power theory.

The energy loss upon interaction between the incident electron and the target atom can be expressed using Bethe stopping theory [28] as follows,

\[
\frac{dE}{dx} = -4\pi z^2 e^4 m v^2 \ln \left(\frac{m v^2}{N I} \right) - \beta^2
\]

where \(\frac{dE}{dx} \) is the energy lost in infinitesimal material thickness of \(dx \); \(z_e \) and \(Z_e \) are, respectively, the charge of the incident particle and the target atom; \(v = \beta c \) is the velocity of the incident particle, \(c \) is the speed of light, \(\gamma = \frac{1}{1 - \beta^2} \), \(N \) is the number density and \(I \) is the mean excitation energy of the target atoms, and \(m \) is the mass of the electron. The monoclinic and hexagonal structures of Cu$_6$Sn$_5$ density (\(\rho \)) are 8.3078 g/cm3 and 8.4106 g/cm3, respectively. For both monoclinic and hexagonal structures of Cu$_6$Sn$_5$, the mean excitation energy \(I = 435.1 \) eV. The stopping power values corresponding to 200 and 1,250kV TEM voltage are 1.749 and 1.258 MeV.cm2.g$^{-1}$, respectively. This means the inelastic stopping power is about 0.5 times less in the case of ultrahigh-voltage compared to conventional low-voltage TEM.